Validation of an electron Monte Carlo dose calculation algorithm in the presence of heterogeneities using EGSnrc and radiochromic film measurements
نویسندگان
چکیده
The purpose of this study is to validate Eclipse's electron Monte Carlo algorithm (eMC) in heterogeneous phantoms using radiochromic films and EGSnrc as a reference Monte Carlo algorithm. Four heterogeneous phantoms are used in this study. Radiochromic films are inserted in these phantoms, including in heterogeneous media, and the measured relative dose distributions are compared to eMC calculations. Phantoms A, B, and C contain 1D heterogeneities, built with layers of lung- (phantom A) and bone- (phantoms B and C) equivalent materials sandwiched in Plastic Water. Phantom D is a thorax anthropomorphic phantom with 2D lung heterogeneities. Electron beams of 6, 9, 12 and 18 MeV from a Varian Clinac 2100 are delivered to these phantoms with a 10 × 10 cm2 applicator. Monte Carlo simulations with an independent algorithm (EGSnrc) are also used as a reference tool for two purposes: (1) as a second validation of the eMC dose calculations, and (2) to calculate the stopping power ratio between radiochromic films and bone medium, when dose is measured inside the heterogeneity. Percent depth dose (PDD) film measurements and eMC calculations agree within 2% or 3 mm for phantom A, and within 3% or 3 mm for phantoms B and C for almost all beam energies. One exception is observed with phantom B and the 6 MeV, where measured PDDs and those calculated with eMC differ by up to 4 mm. Gamma analysis of the measured and calculated 2D dose distributions in phantom D agree with criteria of 3%, 3mm for 9, 12, and 18 MeV beams, and criteria of 5%, 3 mm for the 6 MeV beam. Dose calculations in heterogeneous media with eMC agree within 3% or 3 mm with radiochromic film measurements. Six (6) MeV beams are not modeled as accurately as other beam energies. The eMC algorithm is suitable for clinical dose calculations involving lung and bone.
منابع مشابه
Evaluation of AAA and XVMC Algorithms for Dose Calculation in Lung Equivalent Heterogeneity in Photon Fields: A Comparison of Calculated Results with Measurements
Aims: The aims of the present work are (1) to evaluate dose calculation accuracy of two commonly used algorithms for 15 MV small photon fields in a medium encompassing heterogeneity and (2) to compare them with measured results obtained from gafchromic film EBT2.Materials and Methods: Authors employed kailwood (Pinus Wallichiana) to mimic lung. Briefly, seven Kailwood plates, each measuring 25x...
متن کاملComparison of Electron-Beam Dose Distributions in a Heterogeneous Phantom Obtained Using Radiochromic Film Dosimetry and Monte Carlo Simulation
Introduction: Nowadays new radiochromic films have an essential role in radiotherapy dosimetry. Properties such as high sensitivity, good reproducibility, high spatial resolution, easy readout and portability have made them attractive for dosimetry, especially in high-dose-gradient regions. Material and Methods: In this study, electron-beam dose distributions in homogenous and heterogeneous pha...
متن کاملEvaluation of the RtDosePlan Treatment Planning System using Radiochromic Film and Monte Carlo Simulation
Introduction: GafChromic EBT films are one of the self-developing and modern films commercially available for dosimetric verification of treatment planning systems (TPSs). Their high spatial resolution, low energy dependence and near-tissue equivalence make them suitable for verification of dose distributions in radiation therapy. This study was designed to evaluate the dosimetric parameters of...
متن کاملSiemens primus accelerator simulation using EGSnrc Monte Carlo code and gel dosimetry validation with optical computed tomography system by EGSnrc code
Monte Carlo method is the most accurate method for simulation of radiation therapy equipment. The linear accelerators (linac) are currently the most widely used machines in radiation therapy centers. Monte Carlo modeling of the Siemens Primus linear accelerator in 6 MeV beams was used. Square field size of 10 × 10 cm2 produced by the jaws was compared with TLD. Head simulation of Siemens accele...
متن کاملTotal skin electron therapy (TSET): Monte Carlo Simulation and implementation
Introduction: Total skin electron irradiation technique is used in treatment of the mycosis fungoid. The implementation of this technique requires non-standard measurements and complex dosimetry methods. Operating procedures for total skin electron irradiation and its dosimetry vary in different radiation therapy centers in the world. In this article, validation of TSET techniq...
متن کامل